P13 1 The Electromagnetic Spectrum

Key Questions

- What are the parts of the electromagnetic spectrum (EMS) •
- Range of wavelengths in the EMS that an eye can detect •
- How energy is transferred by electromagnetic waves •

Lesson Objective

To understand the spectrum of electromagnetic waves and how they transfer energy.

Route to Learning				Grade	Achieved
State that all EM waves travel at the same speed in a vacuum				4	
Identify the position of EM waves in the spectrum in order of wavelength and frequency.			h and	5	
Describe the relationship between the frequency of the wave.	he energy being tra	nsferred by an El	M wave and	6	
Explain why the range of EM wavele	ngths detected by t	he human eye is:	limited.	7	
Use standard form in calculations of	wavelength, freque	ency, and wave s	peed.	8	
What type of wave is Light and what	does it transfer?				Grade
Light is a transverse wave and it tra	nsfers energy				2-3
What can travel across a vacuum an	d does it have mass	?			
Light can travel across a vacuum an	d it does not have a	any mass			
Complete the sentence					Grade
Light is an oscillating electric and m athematics from a source (e.g. Sun, Light Bulb) t The combined oscillating electric and	agnetic field transfe t o an absorber (e.g. d magnetic field is o	erring energy Black blazer, Gre called Electromag	een Grass). g netism. .		1-2
What travels at the speed of light in	a vacuum?				
Light and all EMS waves travel at 30	00,000,000 m/s (3	x108 m/s) in a va	cuum		Grade 3-4
Complete the labelling					
Red	Orange Yellow	Green	Blue	Vie	olet
$430 \times 10^{12} \text{ Hz} = \text{Frequency} \qquad \text{Frequency} = 7$			ency = 79	90 x 1	^I 0 ¹² Hz

ANSWERS	Date:	

Name:

Grade

4-5

Grade

6-7

Describe how the eye sees movement and colour

Movement is detected by Rod cells (which also work in low light). Colour is detected by Cone cells

Both cell types chemically transmit their reactions to the brain

Explain why the range of EM wavelengths detected by the human eye is limited.

Intensity of sunlight at the earth's surface is highest in the visible range of the EMS. Evolution of

light detecting cells developed in response to the high energy levels available from the visible range of

the EMS. Other cells detecting the other frequencies in the EMS didn't develop due to the low

levels of energy availability.

Write the numbers in standard form		Write the numbers in the normal format		Grade
120,000,000	120x10 ⁶ or1.2x10 ⁸	8x10 ⁻⁶	0.000,008	4-5
0.000,000,456	45.6x10 ⁻⁸ or 456x10 ⁻⁹	4x10 ³	4,000	•
936000000000000	936x10 ¹² or 9.36x10 ¹⁴	4.67x10 ⁻⁸	0.000,000,046,7	
0.000000029	2.9x10 ⁻⁹ or 29x10 ⁻¹⁰	92.6x10 ¹²	92,600,000,000,000	
4692000000000000000.0	469.2x10 ¹⁵	0.74x10 ⁻⁶	0.000,000,74	

Calculate the missing value and write	$v = f x \lambda$		
Wave Speed m/s	Frequency Hz	Wavelength m Grade	
170x10 ³	170x10 ⁶	1x10 ⁻³	
420x10 ³	75x10 ⁸	56x10 ⁻⁶	
8.4x10 ⁻¹ or 840x10 ⁻³	0.04x10 ⁸	2.1x10 ⁻⁷	
3x10 ⁸	769.2x10 ¹²	390x10 ⁻⁹	
3x10 ⁸	428.6x10 ¹²	7000x10 ⁻¹⁰	
270x10 ⁶	456x10 ¹⁵	5.9x10 ⁻¹⁰	
0.45x10 ¹⁰	86.5x10 ¹⁴	520.2x10 ⁻⁹	

Extension:		G
A green laser is fired through water at a frequency of 560x10 ¹² Hz and wavelength of 401x10 ⁻⁹ m. What's the speed of light in water?	560x10 ¹² x 401x10 ⁻⁹ = 224.56x10 ⁶ m/s	2
Light from a distant star shines red (450x10 ¹² Hz) and blue (650x10 ¹² Hz). What's the difference in wavelength between the two colours?	3x10 ⁸ ÷ 450x10 ¹² = 666.7x10 ⁻⁹ m 3x10 ⁸ ÷ 650x10 ¹² = 461.5x10 ⁻⁹ m 666.7x10 ⁻⁹ - 461.5x10 ⁻⁹ = 205.2x10 ⁻⁹ m	

Exam Questions:

Infrared and microwaves are two types of electromagnetic radiation. The diagram below shows the positions of the two types of radiation within part of the electromagnetic spectrum.

		WWW	\mathcal{M}	
Visible light	Infrared	Microwaves	Radio waves	

(a) Name **one** type of electromagnetic radiation which has more energy than infrared.

any one from: (visible) light, UV / ultra violet, X-ray, gamma / γ-ray

(1)

(b) Use the correct answer from the box to complete each sentence. Each answer may be used once, more than once or not at all.

greater than less than the same as

The wavelength of infrared is <u>less than</u> the wavelength of microwaves.

The frequency of microwaves is <u>less than</u> the frequency of infrared.

The speed of microwaves in a vacuum is <u>the same as</u> the speed of infrared in a vacuum.

(3)

(c) Some of the properties of infrared and microwaves are the same.

State **two** of these properties.

any two from: same speed, travel at the speed of light (in a vacuum), transverse (accept a full description of a transverse wave), transfer energy (from one place to another), can be reflected, can be refracted, can be diffracted, can be absorbed / transmitted, can travel through a vacuum/space, can be polarised

travels in straight lines is insufficient