C4: Chemical Calculations: Chemistry Specification

Conservation of Mass

The law of conservation of mass says that no atoms are lost or made during a chemical reaction. This means that the mass of the products equals the mass of the reactants.

Relative Formula Mass

The relative formula mass is represented by the symbol M_r . RFM is the sum of the relative atomic masses of the atoms in the formula. In a balanced chemical equation, the total of the relative formula masses of the reactants equals the total of the relative formula masses of the products in the quantities shown.

Mass Changes when Products or Reactants are Gases

Some reactions may appear to have a change in mass but this can is because a reactant or product is a gas and its mass has not been taken into account. For example if a gas is made in a chemical reaction and escapes into the atmosphere the mass will appear to decrease.

Use of amount of substance in relation to volumes of gases

1 mole of any gas occupy the same volume under the same conditions of temperature and pressure. The volume of one mole of any gas at room temperature (20°C) and pressure (1 atmosphere pressure) is 24dm³. The number of mole of gas can be calculated using the formula:

No of moles of gas = volume of gas (dm³) / 24dm³ Or No of moles of gas = volume of gas (cm³) / 24000cm³

Using Moles to Balance Equations

In a chemical reaction involving two reactants you would use an excess of one of the reactants to make sure that all of the other reactant is used up. The reactant that is completely used up is called the limiting reactant because it limits the amount of products that can be made.

Amount of Substances in Equations

The masses of reactants and products can be calculated from balanced symbol equations and chemical equations can be interpreted in terms of moles. For example:

$2H_2 + O_2 \rightarrow 2H_2O$

This shows that 2 moles of hydrogen react with 1 mole of oxygen to make 2 moles of water.

Concentration of Solutions

Lots of chemical reactions take place in solutions. The concentration of a solution is measured in mass per given volume of solution and so the units are g/dm³.

Titrations

The volumes of acid and alkali solutions that react with each other can be measured by titration using a suitable indicator. For example if you had a known concentration of acid and wanted to know the volume to neutralise 25cm³ of sodium hydroxide you would carry out a titration. You would add an indicator such as phenolphthalein, methyl orange or litmus to sodium hydroxide in a conical flask and you would add the acid from a burette. When the end point is near start swirling the conical flask and add the acid drop by drop until the indicator changes colour. Record the volume of acid added. In titration calculations you will need to use and rearrange the formula:

Number of moles = concentration x volume

Using Concentrations of Solutions

The concentration of a solution is measured in mol/dm³. The amount in moles of solute or its mass in grams in a given volume of solution can be calculated from its concentration. If the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the other solution can be calculated. To find the concentration of a substance use the formulas: Concentration (g/dm³) = mass of solute (g) / volume of solution (dm³) Concentration (g/dm³) = (mass of solute (g) / volume of solution (cm³)) x 1000

Moles

Chemical amounts are measured in moles. The symbol for mole is mol. The mass of 1 mole of a substance in grams is equal to its relative formula mass. For example water has an RFM of 18 and 1 mole of water has a mass of 18g. 1 mole of any substance contains the same number of particles as one mole of any other substance. This number is known as the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole.

Number of Moles = Mass / RFM

Percentage Yield

In theory no atoms are lost of gained in a chemical reaction but often in a chemical reaction we do not obtain all the product that we should. This could be because the reaction was reversible and did not go to completion, some of the products was lost when it was made or separated from the mixture or some of the reactants did not react in the way expected. The amount of a product obtained is known as the actual yield. Theoretical yield is how much of the product should be made. When the actual yield is compared with the theoretical amount as a percentage, it is called the percentage yield. It is calculated using the formula:

% Yield = (Actual Yield / Theoretical Yield) \times 100

Atom Economy

The atom economy is a measure of the amount of reactants that end up as useful products. For sustainable development and for economic reasons it is important to use reactions with high atom economy. Atom economy can be calculated with the equation:

% atom economy = (RFM of desired product / RFM of all reactants) x 100

C4: Chemical Calculations: Chemistry Specification: Worked Examples

Relative Formula Mass	Percentage Yield	Moles
To calculate RFM of a substance you:	To calculate the percentage yield you:	To calculate number of moles you:
1. Identify the different types of atoms.	1. Calculate the RFM of the substances involved.	1. Calculate the RFM of the substance.
2. Identify how many of these atoms you	2. Use this to calculate theoretical yield.	2. Write in the formula Number of Moles = Mass / RFM
have.	3. Write in the formula % Yield = (Actual Yield / Theoretical	3. Substitute numbers.
3. Identify the atomic mass for each of	Yield) × 100	4. Do the working out.
these atoms.	4. Substitute numbers.	5. Round to appropriate number of s.f and add units
4. Multiply the atomic mass for each atom	5. Do the working out.	For example: How many moles of hydrochloric acid
by the number of atoms.	6. Round to appropriate number of s.f and add units.	molecules are there in 8.2g of acid?
5. Add the totals together.	For example:	
For example: RFM of C ₂ H ₆	Calcium Carbonate \rightarrow Calcium Oxide + Carbon Dioxide	RFM of HCl is = 36.5
2 0	$CaCO_3 \rightarrow CaO + CO_2$	Number of moles = mass / RFM
$C \times 2 = 12 \times 2 = 24$	100kg of calcium carbonate is broken down and 45kg of	=8.2 / 36.5
H x 6 = 1 x 6 = 6 RFM = 30	calcium oxide is made. Calculate the % yield.	=0.2246575342
	Step 1:	=0.25mol
	RFM of $CaCO_3 = 100$	
	RFM of CaO = 56	
	Step 2:	
	10kg of CaCO ₃ should make 56kg of CaO	
	Steps 3 to 6:	
	% Yield = (Actual Yield / Theoretical Yield) × 100	
	= (45/ 56) × 100	
	= 0.8035714286 × 100	
	= 80.3571428571	
	= 80%	

C4: Chemical Calculations: Chemistry Specification: Worked Examples

Use of amount of substance in relation to volumes of gases To calculate volume of gas you: 1. Identify if the volume you have been given is in cm ³ or dm ³ 2. Write in the formula. 3. Substitute numbers. 4. Do the working out. 5. Round to appropriate number of s.f 6. Add units. For example: A balloon is filled with 100cm ³ of helium gas. How many moles of helium is this? No of moles of gas = volume of gas (cm ³) / 24000cm ³ = 100/ 24000 = 0.004166666667 = 0.0042mol	Titrations For titration calculates you: 1. Identify the number of moles involution 3. Convert cm ³ into dm ³ by dividing 4. Calculate the number of moles known concentration and volume moles = concentration x volume 5. Identify the number of moles for your ratio and number of moles concentration = no. of moles / vo For example: 25cm ³ of KOH is neutr which has a concentration of 2.00 concentration of KOH. KOH + HCl \rightarrow KCl Step 1: 1 mole of KOH and 1 mole of H Step 2: 1: 1 ratio Step 3: 25cm ³ = 0.025dm ³ 6.25cm ³ = Step 4: no of moles = concentration x no of moles = 0.0125mol Step 5: 1: 1 ratio so 0.0125mol of KOH Step 6: Concentration = no. of moles / Concentration = 0.0125/ 0.025 Concentration = 0.5mol/dm ³	es. by 1000 s in the solution with a e using the formula no of r the other reactant using holes you have already g the rearranged formula: lume ralised by 6.25cm ³ of HCI mol/dm ³ . Calculate the + H ₂ O HCI 0.00625cm ³ volume	Atom Economy To calculate the atom economy you: 1. Balance the equation if needed. 2. Calculate the RFM of all the reactants. 3. Calculate the RFM of the desired product. 4. Write in the formula % atom economy = (RFM of desired product / RFM of all reactants) x 100 5. Substitute numbers. 6. Do the working out. 7. Round to appropriate number of s.f 8. Add units For example: Iron Oxide + Carbon→ Iron + Carbon Dioxide $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ Calculate the % atom economy for this process that forms iron. Steps 1 and 2: RFM of $2Fe_2O_3 = 320$ RFM of $3C = 36$ RFM of $4Fe = 224$ Step 3: RFM of all reactants = $320 + 36 = 356$ Steps 4 to 8: % atom economy = (RFM of desired product / RFM of all reactants) x 100 $= (224/356) \times 100$ $= 0.6292134831 \times 100$ = 62.9213483146 = 62.9%
 Using Concentrations of Solutions To calculate concentration you: Identify if the volume you have been given is in cm³ or dm³ Write in the formula. Substitute numbers. Do the working out. Round to appropriate number of s.f Add units. 		concentration. Concentration (g/dm ³) = (r = (2 = 0	m chloride is dissolved into 200cm ³ of water. Calculate the mass of solute (g) / volume of solution (cm ³)) x 1000 25/ 200) x 1000 0.125 x 1000 25g/dm ³